

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

TESTING A LOW-INTERACTION HONEYPOT
AGAINST LIVE CYBER ATTACKERS

by

Erwin E. Frederick

September 2011

 Thesis Advisor: Neil C. Rowe
 Second Reader: Daniel F. Warren

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2011

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Testing a Low-Interaction Honeypot against Live Cyber Attackers

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
The development of honeypots as decoys designed to detect, investigate, and counterattack unauthorized
use of information systems has produced an arms race between honeypots (computers designed solely to
receive cyber attacks) and anti-honeypot technology. To test the current state of this race, we performed
experiments in which we ran a small group of honeypots, using the low-interaction honeypot software
Honeyd, on a network outside campus firewall protection. For 15 weeks, we ran different configurations of
ports and service scripts, and simulated operating systems to check which configurations were most useful
as a research honeypot and which were most useful as decoys to protect other network users. We analyzed
results in order to improve the results for both purposes in subsequent weeks. We did find promising
configurations for both purposes; however, good configurations for one purpose were not necessarily good
for the other. We also tested the limits of Honeyd software and identified aspects of it that need to be
improved. We also identified the most common attacks, most common ports used by attackers, and degree
of success of decoy service scripts.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

89

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2011

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Testing a Low-Interaction Honeypot against Live
Cyber Attackers

5. FUNDING NUMBERS

6. AUTHOR(S) Erwin E. Frederick
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol Number: N/A

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The development of honeypots as decoys designed to detect, investigate, and counterattack unauthorized use of
information systems has produced an “arms race” between honeypots (computers designed solely to receive cyber
attacks) and anti-honeypot technology. To test the current state of this race, we performed experiments in which we
ran a small group of honeypots, using the low-interaction honeypot software Honeyd, on a network outside campus
firewall protection.

For 15 weeks, we ran different configurations of ports and service scripts, and simulated operating systems to
check which configurations were most useful as a research honeypot and which were most useful as decoys to protect
other network users. We analyzed results in order to improve the results for both purposes in subsequent weeks. We
did find promising configurations for both purposes; however, good configurations for one purpose were not
necessarily good for the other. We also tested the limits of Honeyd software and identified aspects of it that need to be
improved. We also identified the most common attacks, most common ports used by attackers, and degree of success
of decoy service scripts.

14. SUBJECT TERMS honeypots, Honeyd, honeynet, deception 15. NUMBER OF
PAGES

89
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

 Approved for public release; distribution is unlimited

TESTING A LOW-INTERACTION HONEYPOT
AGAINST LIVE CYBER ATTACKERS

Erwin E. Frederick
Lieutenant Commander, Chilean Navy

B.S., Naval Polytechnic Academy, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2011

Author: Erwin E. Frederick

Approved by: Neil C. Rowe, PhD
Thesis Advisor

Daniel F. Warren
Second Reader

Peter J. Denning, PhD
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The development of honeypots as decoys designed to detect, investigate, and

counterattack unauthorized use of information systems has produced an “arms

race” between honeypots (computers designed solely to receive cyber attacks)

and anti-honeypot technology. To test the current state of this race, we

performed experiments in which we ran a small group of honeypots, using the

low-interaction honeypot software Honeyd, on a network outside campus firewall

protection.

For 15 weeks, we ran different configurations of ports and service scripts,

and simulated operating systems to check which configurations were most useful

as a research honeypot and which were most useful as decoys to protect other

network users. We analyzed results in order to improve the results for both

purposes in subsequent weeks. We did find promising configurations for both

purposes; however, configurations good for one purpose were not necessarily

good for the other. We also tested the limits of Honeyd software and identified

aspects of it that need to be improved. We also identified the most common

attacks, most common ports used by attackers, and degree of success of decoy

service scripts.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1

II. PREVIOUS WORK AND BACKGROUND ... 3
A. HONEYPOTS ... 3

1. Variations of Honeypots According to Their Interaction
Level ... 3

2. Types of Honeypots According to Their Purpose 5
3. Types of Honeypots According to Their Implementation 5
4. Types of Honeypots According to Their Side 6
5. Honeynets .. 6
6. Monitoring Tools in a Honeypot ... 6

B. ANTI-HONEYPOT TECHNOLOGY .. 7

III. DESCRIPTION OF THE APPLICATIONS .. 11
A. HONEYD .. 11

1. Detection of Honeyd .. 12
B. VMWARE ... 13

1. Countermeasures against VMware Fingerprinting 14
C. SNORT ... 15
D. WIRESHARK ... 15
E. MICROSOFT LOG PARSER ... 16
F. SECURITY ONION ... 16
G. FEDORA 14 ... 16

IV. METHODOLOGY ... 17
A. OBJECTIVES ... 17
B. THE EXPERIMENT .. 18
C. SUMMARY OF CONFIGURATIONS USED 20
D. METHODOLOGY TO ANALYZE THE RESULTS 22

V. ANALYSIS OF THE RESULTS .. 25
A. THE EXPERIMENT VIEWED FROM THE OUTSIDE 25
B. HONEYD AS A HONEYPOT ... 25
C. SNORT ALERTS.. 28
D. PORT USAGE .. 29
E. OPERATING SYSTEMS MORE ATTACKED 30
F. SERVICE SCRIPTS ... 30
G. POSSIBLE COMPROMISE IN THE SYSTEMS RUNNING THE

HONEYPOTS ... 31
H. HONEYD AS A DECOY ... 31

VI. CONCLUSIONS AND FUTURE WORK ... 35
A. CONCLUSIONS ... 35
B. FUTURE WORK... 36

 viii

APPENDIX A. DETAILS OF THE CONFIGURATIONS USED BY WEEK 39

APPENDIX B. COMMANDS, CONFIGURATION, AND CODE USED 45
A. COMMANDS USED ... 45
B. HONEYD CONFIGURATION FILE .. 46
C. SCRIPTS AND CODE USED ... 49

APPENDIX C. NMAP OS DETECTION AGAINST HONEYD 61

LIST OF REFERENCES .. 69

INITIAL DISTRIBUTION LIST ... 71

 ix

LIST OF FIGURES

Figure 1. Network architecture. .. 19
Figure 2. Execution of traceroute from the outside on one IP address of the

network ... 25
Figure 3. Flow diagram of the scripts and programs used to analyze the

results every week .. 49

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Honeypots according to interaction level .. 4
Table 2. Characteristics of some honeypots and ways to detect them 9
Table 3. Statistics of alerts in weeks without Honeyd running 26
Table 4. Statistics of alerts in weeks 3–7 with Honeyd running 26
Table 5. Statistics of alerts in weeks 8–15 with Honeyd running 26
Table 6. Number of Honeyd interactions per week ... 27
Table 7. Number of Honeyd interactions by honeypots in week 4 28
Table 8. Number of Honeyd interactions by honeypots in week 6 28
Table 9. Summary of top 10 alerts in the experiment 29
Table 10. Percentage of alerts in production hosts and honeypots with

Honeyd running in weeks 1–7 .. 32
Table 11. Percentage of alerts in production hosts and honeypots with

Honeyd running in weeks 8–15 .. 32
Table 12. Detailed percentage of alerts in production hosts and honeypots

with Honeyd running in weeks 3–7 ... 33
Table 13. Detailed percentage of alerts in production hosts and honeypots

with Honeyd running in weeks 8–15 ... 33
Table 14. Modifications in Tseq test ... 64
Table 15. Modifications in tests T1–T7 ... 64
Table 16. Modifications in PU test .. 65

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

CPU Central Processing Unit

FTP File Transfer Protocol

HD Hard Disk

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Drive Electronics

IDS Intrusion Detection System

IPS Intrusion Prevention System

MAC Media Access Control

NetBIOS Network Basic Input/Output System

NIC Network Interface Card

OS Operating System

PCAP Packet Capture

PCI Peripheral Component Interconnect

RST Reset (TCP Flag)

SCSI Small Computer System Interface

SQL Structured Query language

SMTP Simple Mail Transfer Protocol

SSH Secure Shell

SYN Synchronize (TCP Flag)

SYSLOG System Logging

TCP Transmission Control Protocol

VM Virtual Machine

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank the Chilean and U.S. navies for the privilege of

studying at the Naval Postgraduate School. Thank you also to Professor Neil

Rowe for his motivation, guidance, and support during my thesis study, and to

my second reader Professor Daniel Warren who taught me my the first course in

computer security. I also appreciate the support of Ms. Nova Jacobs for her

friendly, detailed, and accurate advice during the editing of this thesis.

I am especially thankful to my wife, Karla, for her patience and support,

and to my two daughters for inspiring and motivating me every day.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

In the last decade, the development of honeypots—decoys set to detect,

deflect, or counterattack an unauthorized use of information systems—has been

successful enough that attackers have been forced to develop techniques to

detect and neutralize honeypots when they are trying to attack networks. Some

of these techniques have been successful, leading some security professionals

to think that the use of honeypots is now outdated. However, there are also

countermeasures against this anti-honeypot technology.

A powerful and flexible tool that is freely available to deploy multiple

honeypots is Honeyd (Honey daemon), developed by Security expert Niels

Provos [1]. It allows a user to set up and run multiple virtual hosts on a network

with services and specific operating systems running. According to its creator,

Honeyd could be used for two purposes: as a honeypot, attracting attackers that

later could be traced, analyzed, and investigated, and as decoy or distraction,

hiding real systems in the middle of virtual systems. The purpose of this study is

to analyze how useful Honeyd is for both purposes, and to assess which actions

or countermeasures could be useful to improve its performance against possible

attackers.

We set up an experiment using a small network on the NPS campus that

is not protected by the campus firewall. We ran a group of honeypots created

with the aforementioned software and tested them in different runs with different

configurations. During the experiment, we analyzed results week by week to

identify the best configuration of Honeyd for both research and decoy purposes.

We tried to test as many features of Honeyd as possible, such as simulation of

open, closed, or filtered ports, and emulation of operating systems at TCP/IP

stack level, service scripts associated to certain well-known ports. In order to

create a credible set of virtual machines, we also tested small details like

changes in the MAC addresses, set drop rates, set uptime, and the use of proxy

and tarpit capabilities to create a credible set of virtual machines.

 2

In Chapter II, we provide background for this thesis. In Chapter III we

describe the applications and software used to set and analyze the results of the

experiment. In Chapter IV, we describe the methodology applied to execute and

analyze the experiments in this study. In Chapter V, we analyze results obtained

in the experiments: alerts, operating systems emulation, ports attacked, service

scripts, Honeyd as a honeypot, and Honeyd as decoy. In Chapter VI, we state

conclusions obtained in this study and possible future work. Three appendices

provide details of the configurations used each week, the text of the code and

commands used, and an analysis of the Nmap operating system detection in

relation to Honeyd.

 3

II. PREVIOUS WORK AND BACKGROUND

A. HONEYPOTS

The concept of warfare in cyberspace is very similar to that of

conventional warfare.

Understanding our capabilities and vulnerabilities, and those of our

adversaries, allows us to create better defensive and offensive plans. Before

1999, there was very little information about cyber-attacker threats and

techniques. Although there were some previous attempts to obtain information

about attackers, the creation of the Honeynet Project [2] was the answer to that

lack of knowledge. This project is an international nonprofit research organization

that collects and analyzes cyber-attacks using a creative-attack data collection

tool, the honeypot.

A honeypot is a trap set to detect, analyze, or in some manner counteract

attempts of unauthorized use of information systems. Generally, it consists of a

computer, data, or network site which seems to contain information or resources

of value to attackers, but is actually isolated, protected, and monitored.

The value of a honeypot lies in the fact that its use is unauthorized or illicit

[2] because it is not designated as a production component of an information

infrastructure. Nobody outside the creator of the honeypot should be using or

interacting with honeypots; any interaction with a honeypot is not authorized and

is therefore suspicious. Because of this, there are no false positives.

1. Variations of Honeypots According to Their Interaction Level

There are two main categories of honeypots: Low-interaction and high-

interaction [3].

Low-interaction honeypots are passive, and cyber attackers are limited to

emulated services instead of actual operating systems. They are generally easier

 4

to deploy and pose minimal risk to the administrators. Examples of low-

interaction honeypots are Honeyd, LaBrea Tarpit, BackOfficer Friendly, Specter,

and KFSensor.

High-interaction honeypots provide working operating systems and

applications for attackers to interact with. They are more complex and serve as

better intelligence-collection tools. However, they pose a higher level of risk to

the administrator due to their potential of being compromised by cyber attackers,

as for instance, with the use of compromised honeypots to propagate other

attacks. Examples are the Symantec Decoy Server (formerly ManTrap) and

honeynets as an architecture (as opposed to a product or software).

Table 1 summarizes honeypots according to their interaction level.

Low-interaction High-interaction

Honeypot emulates operating

systems, services and network stack.

Full operating systems, applications,

and services are provided.

Easy to install and deploy. Usually

requires simply installing and

configuring software on a computer.

Can be complex to install and deploy

(although commercial versions tend to

be simpler).

Captures limited amounts of

information, mainly transactional data

and some limited interaction.

Can capture far more information,

including new tools, communications,

and attacker keystrokes.

Minimal risk of compromise, as the

emulated services control what

attackers can and cannot do.

Increased risk of compromise, as

attackers are provided with real

operating systems with which to

interact.

Table 1. Honeypots according to interaction level

 5

2. Types of Honeypots According to Their Purpose

Honeypots can be deployed as production or research systems [3]. When

deployed as production systems, typically in an enterprise or military network,

honeypots can serve to prevent, detect, bait, and respond to attacks. When

deployed as research systems, typically in a university or institute, they serve to

collect information on threats for analysis, study, and security enhancement.

3. Types of Honeypots According to Their Implementation

Another distinction exists between physical and virtual honeypots [3].

Physical means that the honeypot is running on a real machine, suggesting that it

could be high-interaction and able to be compromised completely. Physical

honeypots are expensive to maintain and install, making them impractical to

deploy for large address spaces.

Virtual honeypots use one real machine to run one or more virtual

machines that act as honeypots. This allows for easier maintenance and lower

physical requirements. Usually VMware and User-mode Linux (UML) are used to

set up these honeypots.

While reducing hardware requirements for the administrators, virtual

honeypots give cyber attackers the perspective of independent systems in

networks. This reduces the cost of management of the honeypots for production

and research, compared to physical honeypots. There are, however,

disadvantages. The use of the virtual machines is limited by the hardware

virtualization software and the host operating system. The secure management

of the host operating system and virtualization software has to be thoroughly

planned and executed in order to prevent cyber attackers from seizing control of

the host system, and eventually the entire honeynet. It is also easier to fingerprint

a virtual honeynet, as opposed to honeynets deployed with real hardware, by the

presence of virtualization software and signatures of the virtual hardware

 6

emulated by the virtualization software. Cyber attackers may potentially identify

these signatures and avoid these machines, thereby defeating the purpose of

deploying the honeynet.

4. Types of Honeypots According to Their Side

The last distinction is between server-side and client-side honeypots [3].

Traditional, server-side honeypots are servers which wait passively to be

attacked, possibly offering bait. Client honeypots, by contrast, are active devices

in search of malicious servers or other dangerous Internet locations that attack

clients. The client honeypot appears to be a normal client as it interacts with a

suspicious server and then examines whether an attack has occurred. The main

target of client honeypots is Web browsers, but any client that interacts with

servers can be part of a client honeypot, including SSH, FTP, and SMTP.

Examples of client honeypots are HoneyC, HoneyMonkey, HoneyWare,

and HoneyClient.

5. Honeynets

The value of honeypots can be increased by building them into a network;

two or more honeypots on a network form a honeynet [2]. Integrating honeypots

into networks can provide cyber attackers a realistic network of systems to

interact with, and permits defenders a better analysis of distributed attacks.

6. Monitoring Tools in a Honeypot

Honeypots typically contain a set of standard tools, including a component

to monitor, log, collect, and report the intruder’s activity inside the honeypot. The

goal is to capture enough data to accurately recreate the events of the honeypot.

Data collection can be done in many ways, the most important of which are:

- Honeypot log files
- Packet sniffing (network sniffing or intrusion detection systems)
- Keystroke logging (or keylogging)
- Snapshot software
- Firewall logs

 7

One example of a data capture tool used in honeypots is Sebek. It is an

open-source tool whose purpose is to capture from a honeypot as much

information as possible of the attacker’s activities on the host by intercepting

specific system calls, or syscalls, at the kernel level. Sebek takes sophisticated

measures to conceal itself, because honeypot monitoring software needs to

function as stealthily as possible, so the intruder cannot detect it. Otherwise, the

game is over and the honeypot defeated.

As part of the defense-in-depth approach to information security (multiple

layers of security controls), and a critical part of honeypot architecture, intrusion

detection systems are deployed to detect potential incoming threats based on

signature sets or anomalies. Although they are passive, they can overwhelm

administrators with alerts instead of responses or actions against detected

attacks. To address this problem, intrusion prevention systems can be used with

higher thresholds for alerts; they extend the detection capability of IDS to include

automated controls in response to cyber-attacks. For instance, they can ignore,

block, or modify packets, preventing the success of the exploit. This active

capability, however, comes at a cost to the performance of protected networks or

systems. Snort is probably the most popular and well-known intrusion-detection

system. It is useful in disabling attacks on a honeypot and for later analysis of the

data, with the goal of detecting and understanding cyber-attacks against

honeypots.

B. ANTI-HONEYPOT TECHNOLOGY

When security professionals started to include honeypots and honeynets

in their arsenal for information defense, cyber attackers reacted by creating tools

to detect or disable honeypots. The use of this anti-honeypot technology means

that honeypots were affecting the activities of attackers [4].

If an attacker detects a honeypot, most of the time that attacker will avoid

it and go to another place. But there is the risk that an attacker could compromise

the honeypot and use it to attack other computers on the local network or

Internet. The attacker could also try to disable it, delete the data, format the hard

 8

drive, or post its address on hacker websites to prevent other attackers from

begin ensnared by it. In any case, it results in the honeypot’s defeat.

Most attackers will not bother to compromise a honeypot; however, if the

honeypot is a high-priority attack target like a military command-and-control

system, and the attacker is a foreign country, manipulation of that honeypot

might be desirable. To accomplish such manipulation, several techniques and

tools useful to cyber attackers for footprinting or analyzing systems can be

reused or adapted. Some of these tools can detect suspicious environments like

virtual machines, keyloggers, and debuggers. Additionally, most software used to

build and run honeypots has distinguishable characteristics that give attackers

clues, such as recognizable directory and file names. User-mode Linux and

VMware might be detected in this way.

Another approach to identifying honeypots is to experiment with detecting

data collection tools like Sebek. For example, it is possible to detect Sebek by

measuring execution time of the read() system call; excessive delays in the

execution of some processes or a higher load than normal in a CPU are also

good hints. Specific requests and responses to corrupted packets could give a

clear warning to the attacker of the presence of Honeyd or—if there are more

active responses—LaBrea Tarpit.

There is also commercial honeypot-detection software available, such as

Send-Safe Honeypot Hunter. This tool opens a local fake e-mail server on port

25 (SMTP) and asks each proxy to connect back to itself. If the proxy claims that

a session is OK when there is no related incoming session, a possible honeypot

is detected.

Table 2 lists some honeypots, their associated characteristics, and their

potential exploits.

 9

Honeypot/Honeynet Typical Characteristics
Methods for Detecting the

Honeypot

BackOfficer Friendly
Restricted emulation of

services and responses

Send different requests and verify

the consistency of responses for

different services.

LaBrea Tarpit
TCP window size 0;

bogus MAC address

Check persistent TCP window size

0 and MAC address (0:0:0:f:ff:ff).

Honeyd

Signature based

responses;

same clock for every host

Send a mixture of legitimate and

illegitimate traffic, with common

signatures recognized by targeted

honeypots. Analyze timestamps of

the hosts.

Snort IPS

Modification actions;

suspicious packets could

be dropped or modified.

Send different packets and verify

the existence and integrity of

response packets.

Virtual Honeynet

(VMware)

Virtualization and system

files

Detect virtual hardware by name

and VMware MAC addresses.

Probe for existence of VMware.

Active tcpdump

session or Sebek
Logging processes

Scan for active logging process or

increased round-trip time (for

instance, due to read() in Sebek-

based honeypots).

Table 2. Characteristics of some honeypots and ways to detect them

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

III. DESCRIPTION OF THE APPLICATIONS

We used several applications to implement the honeypots and to analyze

the results: VMware, Honeyd, Snort, Microsoft Log Parser, Wireshark, Security

Onion and Fedora 14.

We will describe the applications used in the implementation, with a quick

analysis of the methods to detect them, some countermeasures, and finally the

software used to analyze the results.

A. HONEYD

Honeyd is an open-source program released under GNU General Public

License that allows a user to set up and run multiple virtual hosts on a network.

These virtual hosts can be configured to mimic several different types of servers,

allowing the user to simulate many different computer-network configurations.

The hosts can be configured to run arbitrary services, and their personality can

be adapted so that they appear to be running certain operating systems. Honeyd

enables a single host to claim multiple IP addresses. In this way, Honeyd deters

adversaries by hiding real systems in the middle of virtual systems.

This daemon software offers several interesting features: It is possible to

Ping the virtual machines, or to run a traceroute to find their forwarding packets.

Any type of service on the virtual machine can be simulated according to a

simple configuration file. Instead of simulating a service, it is also possible to

proxy it to another machine, even to the source. The different personalities

simulate operating systems at TCP/IP stack level; this configured personality is

the operating-system fingerprint that scanning tools like Nmap (Network Mapper)

or Xprobe would return.

Although Honeyd is considered a low-interaction honeypot, it has powerful

features to run services through scripts that could be configured to go beyond

simple port listening and give responses to intruders. In this way, we can

increase the level of interaction of the honeypot. Honeyd can be used to create a

virtual honeynet or for general network monitoring. It supports the creation of a

 12

virtual network topology, including dedicated routes and routers. The protocols

can simulate latency and packet loss to make the topology seem more realistic.

Honeyd software provides two types of logs that are useful to analyze.

Network packet-level logging gives an overview or details of what kind of traffic

the honeypots receive, and system logging gives more detailed information about

the ongoing traffic. Honeyd can be used for two purposes: distracting potential

hackers or catching them in a honeypot. Either way, the hackers will be slowed

down and subjected to analysis.

Unfortunately, Honeyd has not been updated recently and some features,

like operating-systems fingerprinting, do not work well with the later versions of

Nmap and Xprobe.

1. Detection of Honeyd

Honeyd software running on a computer, or the virtual hosts created by

Honeyd, could be detected in several ways.

One method is to flood one honeypot with pings or another CPU intensive

process. This honeypot machine will use its resources to respond to this request,

and as a consequence, all other simulated machines will become slower.

Another possible method is related to time and latency. Apart from the fact

that the responses in the simulated systems in the honeynet will always be a little

slower than a real system, we could compare clock timestamps of several

different components of the net. Normally, every computer will have a slightly

different timestamp because their hardware is different. With Honeyd, the

timestamps will be more consistent.

Another way to detect Honeyd, is to analyze the responses of the

machines to some uncommon packets and try to find discrepancies on the

responses. For Honeyd, this happens when a TCP packet, with SYN and RST

flags, is probed to an open port. Honeyd will send a reply, while most other

machines will not.

Another method to detect, and maybe attack, Honeyd is through packet

fragmentation. This method exploits a vulnerability related to the way Honeyd

 13

reassembles fragmented packets. Honeyd checks the source address,

destination address, and identification number but not the protocol number. An

adversary could send a carefully prepared fragmented packet with mixed

protocols that when reassembled by Honeyd could produce a reply packet or

execute some attack, whereas normal operating systems would just discard

them.

To prevent detection of Honeyd, countermeasures are periodically added

to new versions of the software. For example, versions starting from 0.8 solved

the clock timestamp problem by providing a different clock skew (timing

difference) to each operating system and each virtual honeypot. Additionally, the

wrong replies to TCP packets with SYN and RST flags are now patched.

B. VMWARE

VMware software provides a virtualized set of hardware to the guest

operating system. VMware software virtualizes the hardware for a video adapter,

a network adapter, and hard disk adapters to give the appearance of an x86

hardware platform. This allows the installation of almost any operating system,

while the host provides pass-through drivers for guest USB, serial, and parallel

devices. In this way we could run, for example, a guest Linux OS over a

Windows OS host.

The virtualization capabilities of VMware software give us an easy way to

develop a virtual high-interaction honeypot.

 A disadvantage of VMware is that it is relatively easy to detect a VMware

machine in several ways.

By default, the MAC address of NIC will be 00:0C:29, 00:50:56, or

00:05:69, the MAC addresses assigned to the vendor VMware by the IEEE. With

these restrictions, if the attacker is in the same network, the MAC address will be

immediately detected.

 14

The names of IDE and SCSI devices (HD and CDROM) are clearly related

to VMware: VMware Virtual IDE Hard Drive, NECVMWar VMware IDE CDER10,

and VMware SCSI Controller.

The PCI vendor string and device ID of video adapter, VMware Inc PCI

Display Adapter, is visible. Finally, the I/O backdoor in port 0x5658 (22104 in

decimal) that can be used to configure VMware during runtime is visible.

1. Countermeasures against VMware Fingerprinting

There are ways to prevent an attacker from easily detecting the VMware

machine or a virtual environment.

There are hex editors that could be used to edit the VMware binary file,

“vmware-vmx.exe”. We could search for Virtual IDE Hard Drive or Virtual IDE

CDROM, and change them to names more appropriate to hide the VMware

application. In Linux, this can also be done automatically by using scripts that are

made to patch VMware. One such script was made by Kostkya Kortchinsky, a

member of the French Honeynet Project. This Linux script gives the option to

change the name of the IDE devices (HD and CDROM), SCSI devices (HD and

CDROM), PCI vendor and device ID of the video adapter, and the I/O backdoor

used by VMware.

An appropriate configuration of the OS could prevent the VM system from

being fingerprinted and detected. For example, we need to give each virtual

machine enough main memory to be credible, such as 512 MB or above. This

change could be done through the VMware Virtual Machine Control Panel. Also,

we should change VMware MAC address because the default MAC address

assigned by VMware always starts with 00:0C:29, 00:50:56, or 00:05:69.

 Operating systems or VMware provide a way to change the MAC address,

but we need to be careful to match the numbers to an existing vendor that also is

related with changed names of other devices.

 15

C. SNORT

Snort is a free, cross-platform, open-source network intrusion prevention

system and network intrusion detection system, created by Martin Roesch, a

respected authority on intrusion detection and prevention technology.

Snort’s network-based intrusion detection system has the ability to

perform real-time traffic analysis and packet logging on Internet Protocol (IP)

networks. Snort performs protocol analysis, content searching, and content

matching. The program can also be used to detect probes or attacks, including

operating system fingerprinting attempts, common gateway interface, buffer

overflows, server message block probes, and stealth port scans.

Snort can be configured in three main modes: sniffer, packet-logger, and

network intrusion detection. In sniffer mode, the program will read network

packets and display them on the console. In packet-logger mode, the program

will log packets to the disk. In intrusion-detection mode, the program will monitor

network traffic and analyze it against a defined set of rules. The program could

then perform a specific action based on what has been identified.

The rules we used to run Snort were the Sourcefire Vulnerability Research

Team (VRT) rules, which are the official rules available for the program. We used

the latest VRT rules that were available free to registered users, rules an average

of 30 days old when released.

The software provides a detailed alert log, which can be shown in different

formats, like a text file or a pcap file, which store the packets associated with the

alerts so they can be analyzed with software like Wireshark.

D. WIRESHARK

Wireshark is a free, open-source packet analyzer. It is used for network

troubleshooting, analysis, software and communications protocol development,

and education. This software was originally named Ethereal, but it was renamed

Wireshark in May 2006.

 16

Wireshark works in a similar way to tcpdump, but with a graphical front-

end, plus several sorting and filtering options.

E. MICROSOFT LOG PARSER

The Microsoft Log Parser is a powerful and very flexible command-line

tool that provides universal query access to text-based data such as log files,

Extensible Markup Language (XML) files, comma-separated values (CSV) files,

and tab-separated values (TSV). It also provides universal query access to key

data sources on the Windows operating system such as the Event Log, the

Registry, the file system, and the Active Directory. The results of the query can

be custom-formatted in text-based output, or they can be exported to targets like

SQL, SYSLOG, or Excel.

F. SECURITY ONION

Security Onion is free distribution created by security expert Doug Burks,

which could be either used as a LiveDVD or installed in the hard drive as a virtual

machine. It contains software used for installing, configuring, and testing intrusion

detection systems based on Xubuntu 10.04 Operating System and contains

Snort, Suricata, Sguil, Xplico, Nmap, and many other security tools specially

compiled for use in intrusion detection. According to its creator, the software is

hardened for its security function.

G. FEDORA 14

Experiments were conducted in an operating system based on Red Hat

Linux Fedora 14 (Laughlin). This was the last version available at the beginning

of this study.

 17

IV. METHODOLOGY

A. OBJECTIVES

 The objective of the main experiment was to deploy a honeynet easily

accessible to the Internet, and which could be scanned and attacked. We tried to

maximize the interaction with possible attackers, meaning to maximize the

number, variety, and duration of attacks. If this is the case, then the honeypots

are more successful and difficult to detect or avoid. To do this, machines were

simulated using the software Honeyd. The analysis of the number of attacks on

them can be compared with the attacks on other hosts of the network, giving us a

good idea about how effective the honeypots created with this software were in

hiding or protecting the real systems.

We attempted to find the answers to the following questions:

a) How did our simulated network look from the outside?

b) Were the emulated operating systems well simulated by Honeyd?

c) What attacks did the network receive?

d) Did we receive more attacks using Honeyd than without?

e) Did Honeyd attract attacks, diverting them from the real systems?

f) Were there differences in the number or kinds of attacks between the

emulated operating systems, protocols, ports, or services?

g) Did the real laptop (Windows XP) and the VM (Fedora 14 or Security

Onion) running Honeyd get compromised?

h) What can we do to make the simulated hosts more credible?

i) Could Honeyd be useful in a production environment?

 18

B. THE EXPERIMENT

The experiment was run at the Naval Postgraduate School campus using

a single laptop running Windows XP as host; the laptop also ran first a Fedora 14

Virtual Machine and later a Security Onion VM, both using VMware as guests.

This laptop was connected by Ethernet to one port associated to a special

network. This network, known as PacBell network (63.205.26.64/27), is a small

network at NPS that is outside the protection of the main firewall. It has 32 IP

addresses, of which around 10 of them are normally used. We used seven other

IP addresses for this experiment, all of them monitored and working as

honeypots.

We used a hub to connect to the network because the experiment

coexists with other tests and honeypots. One of the latter is a real host running

Windows XP that can be considered part of our experiment, although it is

production system.

On the Windows machine we installed Snort 2.9 with the VRT rules. Snort

was configured to log comma-separated values (CSV) files, and create tcpdump

files for the alerts, which could be read with Wireshark. On the Fedora virtual

machine we installed Honeyd 1.5c, which generated its own packet and system

logs. At the beginning of the experiment and between every run, both machines

were updated and patched to harden them against possible attacks. Snort was

also updated when a new set of rules available for registered users was

released.

We tried different configurations, each of which ran for approximately one

week. We used the following criteria to make changes:

- In general, we went from simpler to more complex.

- Using previous results, we discarded the less successful

configurations in terms of amount of traffic and number and variety

of alerts.

- We changed the relation between IP addresses and the operating

systems randomly.

 19

- A couple of times we also ran the experiment without honeypots or

even without the guest operating system to study the normal traffic

on the network.

Figure 1 shows a diagram of the network architecture used in the experiment.

Figure 1. Network architecture.

 20

C. SUMMARY OF CONFIGURATIONS USED

In week 1 we ran only the host computer with the Snort IDS to have

a baseline for the normal traffic of the monitored network.

In week 2 we ran Honeyd in the guest virtual machine, mistakenly

by default, for a long weekend. This meant that Honeyd ran

claiming all the 32 addresses of the network. (Honeyd is much

more aggressive than similar programs like LaBrea Tarpit in

capturing IP addresses.) We noticed a great increase in the amount

of traffic and alerts until the Ethernet connection was closed by the

NPS Information Technology and Communications Services

department because the experiment was producing IP address

conflicts with the valid users of the network.

In week 3, we ran Honeyd on the guest virtual machine claiming

five addresses: three simulating Windows hosts and two simulating

Linux hosts. Every host had a couple of open ports related with the

operating system running—for example, NetBios ports (137, 138,

139) open for Windows hosts or to simulate certain services, like

port 80 open for HTTP or port 25 open for SMTP.

To the set of virtual machines we added one running the Honeyd

and one as the host for VMware.

In week 4 we configured a more elaborate deception that included

simulated services (some included in the software Honeyd and

others downloaded from the Web page). In addition, we kept most

of the open ports and used a more credible ports status.

Two Windows OS computers were simulated and three with Linux

OS. Every computer had several TCP and UDP open ports and

some emulated services like SMTP, HTTP, FTP, SSH, Telnet,

 21

NetBIOS, POP3, and IMAP. We also used the proxy function of

Honeyd in a couple of ports to redirect the attacks to its source.

In week 5, we used a configuration similar to the previous week but

without the presence of the considered “production” host.

In week 6, after noticing a decrease in the traffic and number of

alerts of the previous configuration, we made some changes to it.

Thinking that in some way attackers could be deceived, the IP

address of the VM host was switched with that of one of the

honeypots. This machine was changed to a Security Onion suite

instead of Fedora 14 because it was supposed to have better

monitoring capabilities and be hardened against possible attacks.

The rest of the configuration was similar to the previous week.

In week 7, although the number of alerts did not increase

significantly, we continued with a similar configuration with respect

to the previous week, with several scripts running on each host.

In week 8, due to the clear difference in the amount of interactions

with emulated Windows and Linux operating systems, we emulated

only the Microsoft Windows OS. Analysis of the results so far

showed us that not-credible emulated services are probably worse

than simulated open ports; as a consequence, we tried again with

only open ports and no services running.

In week 9, considering the good results obtained in week 8, we

continued with a similar port configuration using four of what

appeared to be the most successful scripts.

 22

In week 10 we ran the experiment without Honeyd to check again

the normal behavior of the network.

In week 11 we ran the experiment without Honeyd and even

without the guest virtual machine (like week 1, with better tools for

analysis), to check again the traffic in the network.

In week 12 we ran Honeyd with the same configuration as week 9.

In week 13 we continued the same previous configuration, adding a

Perl script with a fake Telnet server in port 23 on host .79, and

using the newly created personalities for Windows Server 2008 and

Windows XP Service Pack 3.

In week 14 we tried the last control run without Honeyd running.

In week 15 we used the same configuration as week 13, but we

replaced the fake Telnet server with a fake internal Web server in

maintenance status and we included the proxy function in port 445

in one honeypot, in order to send back to the source every packet

the virtual host receives in this port. Also, we switched the IP

addresses of four honeypots.

A detailed configuration for every week is available in Appendix A.

D. METHODOLOGY TO ANALYZE THE RESULTS

Every week, we made a quick analysis of all the information available,

using some programs and tools to assist us. At the end of the study, we made a

more detailed review.

 23

As we learned what worked and what did not, we used different logs,

scripts, tools, and software to better analyze the information captured. This

approach required some changes in the methodology and log formats, and as a

result, there was a significant difference in the amount of work and information

available between the first and last weeks.

We noticed that some of the default formats of the logs are not easy to

order or parse for analysis, such as the text alert logs created by Snort.

Therefore, we chose the comma-separated values (CSV) format for Snort alerts.

Every week we collected the following logs: Snort summary (displayed on

the screen) in a text file, Snort alerts in CSV format, Snort alerts in PCAP format,

Honeyd packet logging in text format, and Honeyd system logging in text format.

To analyze Snort alerts, we used Microsoft Log Parser 2.2 in conjunction

with scripts in SQL language and HTML templates, to display the alerts in a more

friendly way using Web pages. We used some code samples from Giuseppini [5].

For Honeyd logs we also used Microsoft Log Parser 2.

We created “analysis.bat,” a small batch program using Log Parser which

creates a CSV file with the column headers included. It generates several files

and folders by calling six SQL query scripts that produce results in HTML

template format. The results of the queries are:

Alerts index: an HTML file that counts the different alerts and displays

them in descending order of count.

Alerts details: a folder with an HTML file for every different type of Snort

alert. Each file displays in HTML format the information related to the

corresponding alert.

Source index: an HTML file that lists the different source IP addresses and

displays them in descending order of count.

Source details: a folder with an HTML file for each source IP address

related to a Snort alert. Each file displays in HTML format the information related

to the corresponding source IP address.

 24

Destination index: an HTML file that lists the different destination IP

addresses and displays them in descending order of count.

 Destination details: a folder with an HTML file for each destination IP

address related to a Snort alert. Each file displays in HTML format the

information related to the corresponding destination IP address.

We also created “graph_analysis.bat,” a small batch program for Log

Parser that generates graphs for several kinds of information: top alerts, top

source IPs, top destination IP, alerts per hour, top source port, top destination

port, and top protocol.

To analyze Honeyd logs, we create “honeyd_log_analysis.bat,” another

script in Log Parser. It parses the text file “honeyd.log” related to Honeyd packet

logging, generating a CSV file that sets the column name headers to view and

process using Excel. This file was useful because it allowed us to see how

relatively effective the honeypots were. This was in relation to the interactions

they had with other IP addresses, not necessarily alerts or attacks—in other

words, the amount of traffic they could attract. With this method, we could quickly

compare different honeypot configurations.

The code and a sample of the results are included as appendices.

With the help of these tools and programs we obtained several statistical

values related to the traffic, number of alerts, type of alerts, protocols, and

relevant times, all of which gave us much useful information.

 25

V. ANALYSIS OF THE RESULTS

A. THE EXPERIMENT VIEWED FROM THE OUTSIDE

If an attacker scans the network that we set up for this experiment from

the outside it is easily identifiable as a government or education resource.

Executing a traceroute to any host in the network would show that the name of

the last router is clearly associated with the Naval Postgraduate School (see

Figure 2). This situation could either deter hackers or increase their interest. But

the transparent routeraddress should be easy to fix in other deployments.

Figure 2. Execution of traceroute from the outside on one IP address of the
network

B. HONEYD AS A HONEYPOT

After analysis of the data obtained in weeks 1, 10, 11, and 14, without

Honeyd running, we estimated the baseline behavior of the network—the normal

network levels of traffic and alerts. Table 3 shows the results.

 26

 week 1 week 10 week 11 week 14
Number of packets 438661 618723 541740 518659
Number of alerts 388 1325 756 488
Different alerts 4 13 16 5
ICMP alerts 388 757 476 488
TCP alerts 0 568 270 0
UDP alerts 0 0 10 0

Table 3. Statistics of alerts in weeks without Honeyd running

Tables 4 and 5 show corresponding data for weeks when Honeyd was

running.

 week 3 week 4 week 5 week 6 week 7
Number of
packets 1191410 1313693 701771 906893 740769
Number of
alerts 8589 259776 2525 2823 6686
Different
alerts 24 36 12 17 11
ICMP alerts 8366 255744 1940 2176 2990
TCP alerts 218 4016 584 647 3696
UDP alerts 5 16 1 0 0

Table 4. Statistics of alerts in weeks 3–7 with Honeyd running

 week 8 week 9 week 12 week 13 week 15
Number of
packets 897552 951556 995235 807712 1066743
Number of
alerts 3386 2957 2526 3711 4694
Different
alerts 14 19 10 15 14
ICMP alerts 2144 2651 2270 3445 3082
TCP alerts 1242 306 256 266 1612
UDP alerts 0 0 0 0 0

Table 5. Statistics of alerts in weeks 8–15 with Honeyd running

 27

Comparing these two tables, we see a significant increase (approximately

40%) in the number of packets in the network when Honeyd was running. Also,

the total number of alerts increased several times and the number of different

alerts was greater. Given these statistics, we can say that Honeyd increases both

the amount of traffic and the amount of malicious traffic on a network, confirming

that the software is useful for research purposes.

Another way to analyze how successful Honeyd and its different

configurations are at changing attacker behavior is by comparing the number of

conversations—the traffic between two specific endpoints—produced only by

Honeyd, as obtained from its packet log (see Table 6). We can see that with the

exception of week 6, the configurations generated significant traffic, with between

40 and 50 thousands interactions for weeks 4, 9, 12 and 15.

Week
Number of

interactions
week 4 46124
week 5 14078
week 6 5226
week 7 13676
week 8 26827
week 9 49818
week 12 40950
week 13 35244
week 15 41118

Table 6. Number of Honeyd interactions per week

A more detailed view of the degree of success of each weekly

configuration was obtained from the packet log file (Table 7). We can also see

that some honeypots had significantly more conversations than others. In this

case, honeypots .77 and .80 had several times more interactions than honeypots

.74 and .79.

 28

 week 4 TCP UDP week 4 ICMP
Honeypot .73 4525 99
Honeypot .74 1720 121
Honeypot .77 18945 371
Honeypot .79 1725 94
Honeypot .80 18283 188

Table 7. Number of Honeyd interactions by honeypots in week 4

On the contrary, in week 6 we can see that some honeypots were

definitively not successful. We can see in Table 8 that three honeypots were

completely unsuccessful and only two showed significant interactions.

 week 6 TCP UDP week 6 ICMP
Honeypot .70 0 0
Honeypot .73 0 4
Honeypot .74 1247 68
Honeypot .77 0 0
Honeypot .79 3755 118

Table 8. Number of Honeyd interactions by honeypots in week 6

C. SNORT ALERTS

During the experiment the signature-based network intrusion detection

system Snort, running in the host OS, generated alerts for the attacks received in

the network. The number and diversity of alerts changed every week; moreover

even with the same configuration there were significant changes. A summary of

the ten most common alerts is in Table 9.

 29

Alerts Total

NetBIOS SMB-DS repeated logon failure 7996
Shellcode NOOP 2388
P2P BitTorrent transfer 2364
POLICY remote desktop protocol attempted administrator conn. request 1259
Specific threats ASN.1 constructed bit string 603
NetBIOS SMB-DS Unicode max param overflow attempt 84
NetBIOS DCERPC canonicalize overflow attempt 81
NetBIOS DCERPC remote create instance attempt 27
Web-client Portable executable binary transfer 17
Web-client obfuscated Javascript excessive from CharCode 10

Table 9. Summary of top 10 alerts in the experiment

The most common alert—plus three others included in the top 10—was

related to NetBIOS. These alerts appeared in bursts and only in half of the weeks

the experiments were running. An important alert that appeared almost every

week was the Shellcode NOOP. This alert was associated with several different

Snort signature identification numbers, which means different types of buffer

overflow attacks were injecting null operations. Other alerts meriting mention

were the attempts to connect to the honeypots and other hosts with remote

desktop protocol and the constructed bit string heap corruption.

D. PORT USAGE

To create a useful honeypot configuration, both for research and decoy

purposes, it is necessary to manage the ports. During our experiment, the ports

<1024 that were most probed and attacked were in decreasing order of

frequency 445, 80, 135, 139, 53 and 22. Port 445, Microsoft-DS (Directory

Services) Active Directory, was by far the port most attacked during the

experiment with 95.32 % of the TCP protocol alerts. In a distant second place

appears port 80, the Hypertext Transfer Protocol (HTTP) port with 3.25% of the

same kind of alerts. Also appearing were port 135, Microsoft Endpoint Mapper

(also known as DCE/RPC locator service) with 0.84%, and port 139, NetBIOS

 30

Session Service with 0.34%. Thus it is strongly recommended that port 445 be

open in any Windows honeypot configuration, along with ports 80, 135, and 139.

E. OPERATING SYSTEMS MORE ATTACKED

Given that the operating systems emulated by Honeyd were not detected

correctly by fingerprinting tools like Nmap (see Appendix C for details), we

cannot say that emulated Windows hosts received more attacks than emulated

Linux hosts because of their operating system. The main reason why emulated

Windows operating systems received more attacks than Linux is that the port

most attacked, 445, is a Windows operating-system service.

F. SERVICE SCRIPTS

One of the most interesting features of Honeyd is its capability to run

scripts associated with ports as specified in the Honeyd configuration file. These

scripts can improve a decoy to keep the attacker busy interacting with the

honeypot for a longer period of time. The degree of success of our scripts was

diverse due to two factors. First, as we can see in the high number of alerts in

week 4, there was some effect related to the appearance of “new” services

(something similar occurred with “new” hosts) that were quickly probed and

scanned. Within a short time, between one and two weeks depending on the

script, this novelty effect was lost—as is evident in weeks 5 and 6. We can

conclude that a script will have a decreasing degree of success if it is repeated

for several weeks.

Secondly, services that were not credible because they were old, had

errors, or were not logical according to the host’s configuration, were quickly

recognized by attackers who then avoided the honeypot. We can see this

happening in week 6, where the same configuration had been running for three

weeks. This identification process took less time as compared with the novelty

effect. Hence, for research and decoy purposes, it was better to keep the port

open instead of running a non-credible script—as in weeks 8 and 9 (weeks with a

small number of scripts but many ports open).

 31

A weakness that also has to be considered is that service scripts could

make the operating system running Honeyd more vulnerable to attacks.

G. POSSIBLE COMPROMISE IN THE SYSTEMS RUNNING THE
HONEYPOTS

During the experiment we did not find evidence of compromise of the

systems running the honeypots, either in the host OS or the guest OS. The

routine update and patching done to the operating systems and antivirus

signatures on these hosts probably helped.

H. HONEYD AS A DECOY

To analyze the usefulness of the Honeyd framework as a decoy in a

production environment, we can compare the alerts in production hosts (normal

users of the network) with the alerts in the honeypots. This includes the Windows

XP running Snort and VMware, and the virtual machine running Honeyd. Our

goal was to find evidence that suggests that a significant number of alerts have

migrated from production hosts to members of the honeynet.

To do this, we checked the statistics of weeks without Honeyd running: In

week 1, 56% of the alerts were on production hosts and 44% in the Windows XP

host honeypot. In week 10, 80.7% of the alerts were on production hosts and

19.3% in honeypots. In week 11, 89.5% were on production systems and only

10.5% were on the only honeypot running, the Windows XP host.

To do the same analysis for the weeks where Honeyd was running, we

have to discard week 2 because, as a consequence of an error in configuration,

we cannot distinguish between the production host and the honeypots in a

reliable manner during that week.

In Tables 10 and 11 we can see a significant decrease in the percentage

of alerts on production hosts with Honeyd running. There is a notable exception

in week 4, which had the highest number of alerts for any week and also the

highest number of different alerts, which undoubtedly affected the statistics.

Week 4 also had the highest percentage of alerts generated in the production

 32

hosts. How can we explain these contradictory values? As discussed earlier, a

configuration with many ports open and dozens of service scripts running was

very interesting for attackers; consequently, it was repeatedly probed and

attacked. While this situation is good for research purposes, a very tempting

network would attract hundreds of attackers that Honeyd as a decoy cannot

deceive appropriately. This is true at least with a small number of honeypots,

since the production hosts, in practice, will receive much more attacks than

without these decoys. In other words, a good configuration as honeypot would

not be good as a decoy.

Percentage

of alerts week 3 week 4 week 5 week 6 week 7

Production

hosts

4.37769 92.6552 10.1782 9.28091 4.816

Honeypots 95.6223 7.34479 89.8218 90.7191 95.184

Table 10. Percentage of alerts in production hosts and honeypots with Honeyd
running in weeks 1–7

Percentage

of alerts week 8 week 9 week 12 week 13 week 15

Production

hosts 11.636 15.996 9.18448 7.78766 5.66681

Honeypots 88.364 84.004 90.8155 92.2123 94.3332

Table 11. Percentage of alerts in production hosts and honeypots with Honeyd
running in weeks 8–15

The rest of the weeks appeared promising for decoy purposes, showing

us that more than 80% of the alerts occurred on honeypots instead of production

systems. Tables 12 and 13 provide a more detailed analysis of Honeyd. It shows

us the percentage of alerts in dividing honeypots into three categories: the host

 33

running Windows XP and VMware, the guest running Fedora 14 or Security

Onion, and the honeypots created by Honeyd. We can see that in weeks like 3

and 6, with a high percentage of alerts in honeypots, they were concentrated in

the host and guest—a situation not completely desirable because these

machines are more vulnerable than the virtual honeypots created by Honeyd.

Discarding week 4, the rest of the weeks show that more than 40% of the alerts

were on Honeyd virtual honeypots, with numbers as high as 62.8% in week 9,

the best for Honeyd as a decoy.

Percentage

of alerts

week 3 week 4 week 5 week 6 week 7

Host 72.7209 4.30371 9.82178 12.4336 4.2178

Guest 16.8006 1.48782 38.8911 56.3585 48.564

Honeyd
honeypots

6.10083 1.55326 41.1089 21.927 42.402

Production

hosts

4.37769 92.6552 10.1782 9.28091 4.816

Table 12. Detailed percentage of alerts in production hosts and honeypots with
Honeyd running in weeks 3–7

Percentage

of alerts

week
8

week
9

week
12

week
13

week
15

Host 7.2652 10.213 10.6097 8.40744 4.55901

Guest 30.892 10.991 26.7221 40.7976 49.8722

Honeyd
honeypots

50.207 62.8 53.4838 43.0073 39.902

Production

hosts

11.636 15.996 9.18448 7.78766 5.66681

Table 13. Detailed percentage of alerts in production hosts and honeypots with
Honeyd running in weeks 8–15

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

VI. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

Honeyd showed itself to be a useful tool for research on attacks. It

increased the amount of traffic in the network by approximately 40%, and by

several times the number of alerts available for study.

Honeyd effectively simulated the status of the ports (open, closed, or

filtered) and appeared to associate them properly to scripts. However, Honeyd

failed to create virtual hosts with a credible emulated operating system because

the program was designed for the first-generation Nmap software and has not

been updated. The attempts to mitigate this problem were only partially

successful; therefore, we had to rely on only the port configuration to simulate

different operating systems.

Some of the scripts used were successful to attract many different

attackers, but only for a short time. Others were not so successful or lost their

initial success quickly. We found two probable reasons for this behavior: The

scripts were either not elaborated enough and were easily discovered as

deceptions by sophisticated attackers, or Honeyd, as a low-interaction honeypot,

has a clear limit in producing credible interactions with attackers.

The ports most attacked with Honeyd were 445 (Microsoft-DS), 80

(HTTP), 135, and 139. This suggests that these ports should be supported in any

honeypot configuration for an adequate level of interaction with attackers. Ports

445, 135, and 139 are related to Windows operating systems, and hence

produced more attacks for virtual hosts simulating Windows than the Linux

operating system.

The most common attacks received in the honeypots were related to

NetBIOS and to Shellcode NOOPs (buffer overflows). Other significant attacks

were the attempts to connect to the honeypots and other hosts with a remote-

desktop protocol and the constructed bit string heap corruption. However, we did

 36

not find symptoms or evidence of successful attacks or compromise in the host

running Windows XP, nor did we find it in the guest system running Fedora 14 or

Security Onion Ubuntu. In general, we found that the honeypots received scans

and basic attacks, without showing that advanced attack techniques were used.

The use of the software Microsoft Log Parser with sql and tlp scripts

appeared to be a useful and flexible tool for analyzing Snort alerts in Windows

machines.

Honeyd appeared also to be useful as a decoy to distract attackers from

more valuable targets, but it must be carefully configured to achieve good results.

Some configurations with many open ports and scripts running were useful as a

research honeypot, but not as a decoy. Good configurations for decoys must

have a limited number of scripts and open ports, enough to make the decoys

attractive, but not so many as to make the entire network more attractive to

attackers. When this situation happened, the normal users of the network—i.e.,

the hosts that were intended to be protected by the decoys—were attacked

considerably more than usual. But decoys, as in conventional warfare, have a

limited useful life. They must be used at the right time.

B. FUTURE WORK

We suggest the following future investigations:

• Modify Honeyd to allow second-generation operating-system

detection (this could be done by modifying the file “personality.c”)

and run the experiment again.

• Run the experiment with more IP addresses available, so Honeyd

can simulate more virtual hosts as honeypots.

• Modify or create scripts that can deceive attackers for a longer

period of time. We suggest elaborated fake Web servers, with a

credible degree of interaction during the navigation on the Web site.

This should be complemented with messages about restrictions to

navigate in some pages, login windows, and banners, encouraging

 37

unauthorized users to close the page. Mail servers and file-transfer

servers could also be simulated.

• Try a similar experiment with other software, such as Nepenthes or

its successor Dionaea, to deploy low-interaction honeypots.

• Experiment with high-interaction honeypots based in virtualization

software like VMware or User-mode Linux (UML).

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

APPENDIX A. DETAILS OF THE CONFIGURATIONS USED BY WEEK

Week 1:

We ran the laptop with the host operating system (Windows XP) in IP address

.68 with the Snort IDS running, to get a baseline of the normal traffic and alerts of

the monitored network.

Week 2:

We ran Honeyd for a long weekend, claiming (by mistake) all the 32 addresses of

the network. Honeyd is more aggressive than similar programs like LaBrea Tarpit

in claiming IP addresses.

Week 3:

We ran Honeyd in the guest operating system (Fedora 14), claiming 5 IP

addresses:

• .73 “Microsoft Windows 98 SP2” with TCP ports 135,137,139, and 9898

open.

• .74 “Microsoft Windows XP Professional SP1” with TCP ports 135, 137,

139 and 443 open.

• .77 “Microsoft Windows NT 4.0 Server SP5-SP6” with TCP ports 80, 137,

and 139 open.

• .79 “OpenBSD 3.3” with TCP and UDP port 421 open.

• .80 “FreeBSD 4.7-RELEASE” with TCP and UDP port 4448 open. Default

TCP action tarpit open.

To these five virtual machines we had to add the .70 guest operating system

running the Honeyd and .68 as the host operating system for VMware. The latter

is the only real machine used in the experiment.

 40

Week 4:

We made a more elaborate configuration for the same IP addresses that

included simulated services (some included in the software Honeyd and others

downloaded from the Honeyd Web page) and more credible ports status.

• .73 “Microsoft Windows NT 4.0 Server SP5-SP6” with TCP ports 21, 25,

80, 110, 137, 138, 139, 143, 389, 445, and 5901, and UDP ports 161, 137,

138, and 445 open and running simulated services using scripts.

• .74 “Linux 2.4.7 (X86)” with TCP ports 21, 22, 23, 25, 79, 80, 110, 143,

515, 3128 , 8080, and 8081, and UDP ports 53, 161, and 514 open and

running simulated services using scripts

• .77 “Microsoft Windows NT 4.0 Server SP5-SP6” with the same

configuration as week 3 but with a script on TCP port 80 and TCP port

8080 open.

• .79 “Linux 2.2.12 - 2.2.19” with TCP ports 22, 23, 25, 79, 80, 110, 143,

515, 3128 , 8080, and 8081, and UDP ports 53, 161, and 514 open and

running simulated services using scripts.

• .80 “FreeBSD 4.7-RELEASE” using the same configuration as in week 3.

Week 5:

This week the configuration was the same as the previous week.

Week 6:

In this week we made some important changes to the configuration of the

experiment: We changed the guest operating system to .80 instead of the

previously used IP address .70. As a consequence, the honeypot with FreeBSD

emulated operating system was moved to IP address .70. The VM guest

operating system was changed to a Security Onion suite instead of Fedora 14

because it is supposed to have better capabilities for monitoring and be

hardened against possible attacks.

 41

• .70 “FreeBSD 4.7-RELEASE” using the same previous configuration for

this operating system.

• .73 “Microsoft Windows NT 4.0 Server SP5-SP6” with TCP ports 21, 25,

80, 110, 137, 138, 139, 143, 389, 445, and 5901, and UDP ports 161, 137,

138, and 445 open and running simulated services using scripts.

• .74 “Linux 2.4.7 (X86)” with TCP ports 21, 22, 23, 25, 79, 80, 110, 143,

515, 3128, 8080, and 8081, and UDP ports 53, 161, and 514 open and

running simulated services using scripts

• .77 “Microsoft Windows NT 4.0 Server SP5-SP6” with the same

configuration as week 3 but with a script on TCP port 80 and TCP port

8080 open.

• .79 “Linux 2.2.12 - 2.2.19” with TCP ports 22, 23, 25, 79, 80, 110, 143,

515, 3128 , 8080, and 8081, and UDP ports 53, 161, and 514 open and

running simulated services using scripts.

• .80 Security Onion guest operating system running honeyd.

Week 7:

On week 7 the configuration was the following:

• .70 “Linux 2.4.7 (X86)” with TCP ports 21, 22, 23, 25, 79, 80, 110, 143,

515, 3128, 8080, 8081, and UDP ports 53, 161, and 514 open and running

simulated services using scripts

• .73 “Microsoft Windows NT 4.0 Server SP5-SP6” with TCP port 80

(HTTP) running a service script; TCP ports 137, 139, 443, and 8080 open;

and UDP ports 135 and 137.

• .74 “Linux 2.4.7 (X86)” with TCP port 23 (Telnet) and TCP port 79

(Name/finger protocol) with scripts running and the UDP port open.

• .77 the same as .70

• .79 “Microsoft Windows NT 4.0 Server SP5-SP6” with ports TCP 21, 25,

80, 110, 137, 138, 139, 143, 389, 445, and 5901, and UDP ports 161, 137,

138, and 445 open and running simulated services using scripts.

 42

Week 8:

In this week, due to the clear difference in the number of interactions between

the Windows and Linux operating systems, we configured only Windows.

Analysis of the results thus far showed us that not-credible emulated services are

probably worse than simulated only-open ports; as a consequence, we tried

again with open ports instead of simulated services.

The configuration was the following:

• .70 “Microsoft Windows XP Professional SP1” with TCP ports 135, 139,

and 445 open, and UDP ports 135, 137, 138, 445, and 4500 open.

• .73 “Microsoft Windows Server 2003 Standard Edition” with TCP ports 20,

21, 25, 80, 135, 139, and 445 open, and UDP ports 53, 135, 137, 138, and

445 open.

• .74 “Microsoft Windows XP Professional SP1” with TCP ports 135, 139,

and 445 open, and UDP ports 135, 137, 138, 445, and 4500 open.

• .77 “Microsoft Windows NT 4.0 Server SP5-SP6” with TCP ports 80, 135,

139, 443, 445, and 8080 open, and UDP ports 135, 137, 138, and 445

open.

• .79 “Microsoft Windows Server 2003 Standard Edition” with TCP ports

135, 139, 445, and 1433 open, and UDP ports 135, 137, 138, 445, and

1434 open.

Week 9:

On week 9 the configuration was the following:

• .70 “Microsoft Windows XP Professional SP1” with TCP ports 135, 139,

and 445 open, and UDP ports 135, 137, 138, 445, and 4500 open.

• .73 “Microsoft Windows Server 2003 Standard Edition” with TCP ports 20,

21, 25, 80, 135, 139, and 445 open, and UDP ports 53, 135, 137, 138, and

445 open. Scripts were running in ports 21 (FTP), 25 (SMTP), and 110

(POP3).

 43

• .74 “Microsoft Windows XP Professional SP1” with TCP ports 135, 139,

and 445 open, and UDP ports 135, 137, 138, 445, and 4500 open.

• .77 “Microsoft Windows NT 4.0 Server SP5-SP6 with TCP ports 80, 135,

139, 445, and 8080 open, and UDP ports 135, 137, 138, and 445. Perl

script running in TCP port 80 (HTTP).

• .79 “Microsoft Windows Server 2003 Standard Edition” with TCP ports

135, 139, 445, and 1433 open, and UDP ports 135, 137, 138, 445, and

1434 open.

Week 10:

We ran the experiment without Honeyd to check the normal behavior of the

network in a different time period.

Week 11:

We ran the experiment without Honeyd, this time even without the guest virtual

machine (as in week 1, although with better tools for analysis), to check again the

traffic in the network.

Week 12:

Due to the previous week’s promising results, we repeated the same

configuration as week 9.

Week 13:

We continued the same previous week configuration, adding a Perl script with a

fake Telnet server in port 23 on host .79, and using the newly created

personalities for Windows Server 2008 and Windows XP Service Pack 3.

Week 14:

We tried the last control run without Honeyd running.

 44

Week 15:

We used the same configuration as week 13, but we replaced the fake Telnet

server with a fake internal web server in maintenance status, and we included

the proxy function in port 445 in one honeypot (.77), in order to send back to the

source every packet the virtual host receives in this port. We also switched the IP

addresses of 4 honeypots.

 45

APPENDIX B. COMMANDS, CONFIGURATION, AND CODE USED

A. COMMANDS USED

Snort was run in a Windows XP laptop with these instructions in the command

line:

Snort.exe –dev –i2 –y –c C:\Snort\etc\snort.conf –l C:\Snort\log

-dev: Tells Snort to display the packet data, decode data link layer headers and

be verbose. Sometimes this switch was not used.

-i2: Tells Snort which interface has to be monitored.

-y: Tells Snort to include the year in the timestamp format. It is necessary to be

compatible with Microsoft Log Parser.

-c: Designates the configuration file and location that Snort uses.

-l: Creates a log file in the indicated location and according to the format selected

in the configuration file.

Honeyd was run in a Fedora 14 VM and a Security Onion VM with this command

in the terminal:

honeyd –d –f /home/user/Desktop/honeyd.conf –l

/home/user/Desktop/honeyd.log –s /home/user/Desktop/honeyd_syslog.log

-d: This switch tells Honeyd not to daemonize and display verbose messages of

the activities that it is doing.

-f: Specifies the configuration file that Honeyd uses.

-l: Creates packet-level log file in the indicated location.

-s: Creates service-level log file in the indicated location.

 46

B. HONEYD CONFIGURATION FILE

This file is one of the most important files of Honeyd. On it we define the network

configuration, the emulated operating systems, the status of ports and the

services running.

For example, the configuration file for Honeyd during week 9 was the following:

Configuration for week 9

route entry 63.205.26.65

route 63.205.26.65 link 63.205.26.70/32
route 63.205.26.65 link 63.205.26.73/32
route 63.205.26.65 link 63.205.26.74/32
route 63.205.26.65 link 63.205.26.77/32
route 63.205.26.65 link 63.205.26.79/32

Windows NT4 web server
create windows
set windows personality “Microsoft Windows NT 4.0 Server SP5-SP6”
add windows tcp port 80 “perl
/home/erwin/Desktop/honeyd_services_scripts/iisemulator-0.95/iisemul8.pl”
add windows udp port 135 open
add windows tcp port 135 open
add windows udp port 137 open
add windows udp port 138 open
add windows tcp port 139 open
add windows tcp port 443 open
add windows udp port 445 open
add windows tcp port 445 open
add windows tcp port 8080 open
set windows default tcp action reset
set windows default udp action reset
set windows uptime 168939
set windows droprate in 4

Windows SQL Server
create windowsSQL
set windowsSQL personality “Microsoft Windows Server 2003 Standard Edition”
add windowsSQL tcp port 135 open
add windowsSQL udp port 135 open
add windowsSQL udp port 137 open
add windowsSQL udp port 138 open
add windowsSQL tcp port 139 open

 47

add windowsSQL tcp port 445 open
add windowsSQL udp port 445 open
add windowsSQL udp port 1434 open
add windowsSQL tcp port 1433 open
set windowsSQL default tcp action reset
set windowsSQL default udp action reset
set windowsSQL ethernet “intel”

Windows 2003 Server
create windows2003
set windows2003 personality “Microsoft Windows Server 2003 Standard Edition”
add windows2003 tcp port 20 open
add windows2003 tcp port 21 “sh
/home/erwin/Desktop/honeyd_services_scripts/ftp.sh”
add windows2003 tcp port 25 “sh
/home/erwin/Desktop/honeyd_services_scripts/smtp.sh”
add windows2003 udp port 53 open
add windows2003 tcp port 80 open
add windows2003 tcp port 110 “sh
/home/erwin/Desktop/honeyd_services_scripts/pop3.sh”
add windows2003 udp port 110 open
add windows2003 tcp port 135 open
add windows2003 udp port 135 open
add windows2003 udp port 137 open
add windows2003 udp port 138 open
add windows2003 tcp port 139 open
add windows2003 tcp port 445 open
add windows2003 udp port 445 open
set windows2003 default tcp action reset
set windows2003 default udp action reset
set windows2003 uptime 147239
set windows2003 droprate in 8
set windows2003 ethernet “00:24:E8:A3:d2:f1”

Windows XP
create windowsXP
set windowsXP personality “Microsoft Windows XP Professional SP1”
add windowsXP tcp port 135 open
add windowsXP udp port 135 open
add windowsXP udp port 137 open
add windowsXP udp port 138 open
add windowsXP tcp port 139 open
add windowsXP tcp port 445 open
add windowsXP udp port 445 open
add windowsXP udp port 4500 open

 48

set windowsXP default tcp action reset
set windowsXP default udp action reset
set windowsXP ethernet “00:24:E8:23:d0:4f”

bind 63.205.26.70 windowsXP
bind 63.205.26.73 windows2003
bind 63.205.26.74 windowsXP
bind 63.205.26.77 windows
bind 63.205.26.79 windowsSQL

This file specifies for Honeyd: the default gateway (route entry), the IP addresses

available to create virtual hosts, several different hosts with particular

characteristics in relation to its emulated operating system, TCP and UDP ports

open, ports with services scripts running, default action in other ports, time the

host is up, packet drop rate, MAC addresses and which IP address is assigned to

each host.

 49

C. SCRIPTS AND CODE USED

Figure 3 shows how the data was processed and analyzed.

analysis.bat graph_analysis.bat honeyd_log_analysis.bat

alerts.html
alerts folder
srcip.html

srcip folder
dstip.html

dstip folder
alertfin.csv

honeyd1.csv

AlertsbyHour.gif
AlertsTopAlerts.gif
AlertsTopDstIPs.gif

AlertsTopDstPorts.gif
AlertsTopProtocols.gif

AlertsTopSrcIPs.gif
AlertsTopSrcPorts.gif

Honeydlog_header.tsv
Alertheader.csv
Alerts-index.sql
Alerts-index.tpl

Alerts-Details.sql
Alerts-Details.tpl
Srcip-details.sql
Srcip-details.tpl
Dstip-details.sql
Dstip-details.tpl

GraphAlertsPerHour.sql
GraphTopAlerts.sql
GraphTopDstIPs.sql

GraphTopDstPorts.sql
GraphTopProtocol.sql
GraphTopSrcIPs.sql

GraphTopSrcPorts.sql

Alerts.csv
(from Snort)

Honeyd.log
(from

Honeyd)

Figure 3. Flow diagram of the scripts and programs used to analyze the results
every week

 50

Analysis.bat:

LogParser -i:CSV -o:CSV -headerRow:off -iTsFormat:MM/dd/yy-hh:mm:ss -
iHeaderFile:AlertHeader.csv “SELECT* INTO report/alertfin1.csv FROM
alert.csv”
LogParser file:alerts_index.sql -i:CSV -iHeaderFile:AlertHeader.csv -
iTsFormat:MM/dd/yy-hh:mm:ss -headerRow:off -o:tpl -tpl:alerts_index.tpl
LogParser file:alerts_detail.sql -i:CSV -iHeaderFile:AlertHeader.csv -
iTsFormat:MM/dd/yy-hh:mm:ss -headerRow:off -o:tpl -tpl:alerts_detail.tpl
LogParser file:srcip_index.sql -i:CSV -iHeaderFile:AlertHeader.csv -
iTsFormat:MM/dd/yy-hh:mm:ss -headerRow:off -o:tpl -tpl:srcip_index.tpl
LogParser file:srcip_detail.sql -i:CSV -iHeaderFile:AlertHeader.csv -
iTsFormat:MM/dd/yy-hh:mm:ss -headerRow:off -o:tpl -tpl:srcip_detail.tpl
LogParser file:dstip_index.sql -i:CSV -iHeaderFile:AlertHeader.csv -
iTsFormat:MM/dd/yy-hh:mm:ss -headerRow:off -o:tpl -tpl:dstip_index.tpl
LogParser file:dstip_detail.sql -i:CSV -iHeaderFile:AlertHeader.csv -
iTsFormat:MM/dd/yy-hh:mm:ss -headerRow:off -o:tpl -tpl:dstip_detail.tpl

AlertHeader.csv (Adapted from Giuseppini, 2005 [5])
timestamp, sig_generator, sig_id, sig_rev, msg, proto, src, srcport, dst, dstport, ethsrc,
ethdst, ethlen, tcpflags, tcpseq, tcpack, tcplen, tcpwindow, ttl, tos, id, dgmlen, iplen,
icmptype, icmpcode, icmpid, icmpseq

Alerts-Index.sql (From Giuseppini, 2005 [5])

SELECT DISTINCT
 sig_id,
 msg,
 COUNT(msg) as Alerts
INTO report\alerts.html
FROM alert.csv
GROUP BY msg, sig_id
ORDER BY Alerts DESC

Alerts-Index.tpl (Adapted from Giuseppini, 2005 [5])

<LPHEADER>
 <html>
 <head>
 <meta http-equiv=“Content-Type” content=“text/html; charset=windows-
1252”>
 <link rel=“stylesheet” type=“text/css” href=“snort.css”>
 <title>Snort Alert Messages</title>

 51

 </head>
 <body>
 <p><h1>Snort Alerts Summary</h1>

 <i>Created %SYSTEM_TIMESTAMP% </i></p>
 <table border=“0” width=“75%” cellspacing=“2”>
 <tr>
 <th>Signature</th>
 <th>Message</th>
 <th>Alerts</th>
 </tr>
</LPHEADER>
<LPBODY>
 <tr>
 <td> %sig_id%</td>
 <td> %msg%</td>
 <td> %Alerts%</td>
 </tr>
</LPBODY>
<LPFOOTER>
 </table>
 </p>
 </body>
 </html>
</LPFOOTER>

Alerts-Detail.sql (Adapted from Giuseppini, 2005 [5])

SELECT
 sig_id,
 TO_DATE(timestamp) AS Date,
 TO_TIME(timestamp) AS Time,
 msg,
 proto,
 src,
 srcport,
 dst,
 dstport,
 ethsrc,
 ethdst,
 ethlen,

 52

 tcpflags,
 tcpseq,
 tcpack,
 tcplen,
 tcpwindow,
 ttl,
 tos,
 id,
 dgmlen,
 iplen,
 icmptype,
 icmpcode,
 icmpid,
 icmpseq
INTO report\alert*.html
FROM alert.csv

Alerts-Detail.tpl (Adapted from Giuseppini, 2005 [5])

<LPHEADER>
 <table border=“0” width=“140%” cellspacing=“2”>
 <tr>
 <th>date</th>
 <th>time</th>
 <th>proto</th>
 <th>src</th>
 <th>srcport</th>
 <th>dst</th>
 <th>dstport</th>
 <th>ethsrc</th>
 <th>ethdst</th>
 <th>ethlen</th>
 <th>tcpflags</th>
 <th>tcpseq</th>
 <th>tcpack</th>
 <th>tcplen</th>
 <th>tcpwindow</th>
 <th>ttl</th>
 <th>tos</th>
 <th>id</th>
 <th>dgmlen</th>

 53

 <th>iplen</th>
 <th>icmptype</th>
 <th>icmpcode</th>
 <th>icmpid</th>
 <th>icmpseq</th>
 </tr>
</LPHEADER>
<LPBODY>
 <tr>
 <td> %date%</td>
 <td> %time%</td>
 <td> %proto%</td>
 <td> %src%</td>
 <td> %srcport%</td>
 <td> %dst%</td>
 <td> %dstport%</td>
 <td> %ethsrc%</td>
 <td> %ethdst%</td>
 <td> %ethlen%</td>
 <td> %tcpflags%</td>
 <td> %tcpseq%</td>
 <td> %tcpack%</td>
 <td> %tcplen%</td>
 <td> %tcpwindow%</td>
 <td> %ttl%</td>
 <td> %tos%</td>
 <td> %id%</td>
 <td> %dgmlen%</td>
 <td> %iplen%</td>
 <td> %icmptype%</td>
 <td> %icmpcode%</td>
 <td> %icmpid%</td>
 <td> %icmpseq%</td>
 </tr>
</LPBODY>
<LPFOOTER>
 </table>
 </p>
 </body>
 </html>

 54

</LPFOOTER>

srcip-detail.sql (Adapted from Giuseppini, 2005 [5])

SELECT
 src,
 TO_DATE(timestamp) AS Date,
 TO_TIME(timestamp) AS Time,
 msg,
 proto,
 sig_id,
 srcport,
 dst,
 dstport,
 ethsrc,
 ethdst,
 ethlen,
 tcpflags,
 tcpseq,
 tcpack,
 tcplen,
 tcpwindow,
 ttl,
 tos,
 id,
 dgmlen,
 iplen,
 icmptype,
 icmpcode,
 icmpid,
 icmpseq
INTO report\srcip*.html
FROM alert.csv

srcip-detail.tpl (Adapted from Giuseppini, 2005 [5])

<LPHEADER>
 <table border=“0” width=“140%” cellspacing=“2”>
 <tr>
 <th>date</th>
 <th>time</th>
 <th>proto</th>

 55

 <th>sig_id</th>
 <th>srcport</th>
 <th>dst</th>
 <th>dstport</th>
 <th>ethsrc</th>
 <th>ethdst</th>
 <th>ethlen</th>
 <th>tcpflags</th>
 <th>tcpseq</th>
 <th>tcpack</th>
 <th>tcplen</th>
 <th>tcpwindow</th>
 <th>ttl</th>
 <th>tos</th>
 <th>id</th>
 <th>dgmlen</th>
 <th>iplen</th>
 <th>icmptype</th>
 <th>icmpcode</th>
 <th>icmpid</th>
 <th>icmpseq</th>
 </tr>
</LPHEADER>
<LPBODY>
 <tr>
 <td> %date%</td>
 <td> %time%</td>
 <td> %proto%</td>
 <td> %sig_id%</td>
 <td> %srcport%</td>
 <td> %dst%</td>
 <td> %dstport%</td>
 <td> %ethsrc%</td>
 <td> %ethdst%</td>
 <td> %ethlen%</td>
 <td> %tcpflags%</td>
 <td> %tcpseq%</td>
 <td> %tcpack%</td>
 <td> %tcplen%</td>
 <td> %tcpwindow%</td>

 56

 <td> %ttl%</td>
 <td> %tos%</td>
 <td> %id%</td>
 <td> %dgmlen%</td>
 <td> %iplen%</td>
 <td> %icmptype%</td>
 <td> %icmpcode%</td>
 <td> %icmpid%</td>
 <td> %icmpseq%</td>
 </tr>
</LPBODY>
<LPFOOTER>
 </table>
 </p>
 </body>
 </html>
</LPFOOTER>

dstip-detail.sql (Adapted from Giuseppini, 2005 [5])

SELECT
 dst,
 TO_DATE(timestamp) AS Date,
 TO_TIME(timestamp) AS Time,
 msg,
 proto,
 sig_id,
 srcport,
 src,
 dstport,
 ethsrc,
 ethdst,
 ethlen,
 tcpflags,
 tcpseq,
 tcpack,
 tcplen,
 tcpwindow,
 ttl,
 tos,
 id,

 57

 dgmlen,
 iplen,
 icmptype,
 icmpcode,
 icmpid,
 icmpseq
INTO report\dstip*.html
FROM alert.csv

dstip-detail.tpl (Adapted from Giuseppini, 2005 [5])

<LPHEADER>
 <table border=“0” width=“140%” cellspacing=“2”>
 <tr>
 <th>date</th>
 <th>time</th>
 <th>proto</th>
 <th>src</th>
 <th>srcport</th>
 <th>sig_id</th>
 <th>dstport</th>
 <th>ethsrc</th>
 <th>ethdst</th>
 <th>ethlen</th>
 <th>tcpflags</th>
 <th>tcpseq</th>
 <th>tcpack</th>
 <th>tcplen</th>
 <th>tcpwindow</th>
 <th>ttl</th>
 <th>tos</th>
 <th>id</th>
 <th>dgmlen</th>
 <th>iplen</th>
 <th>icmptype</th>
 <th>icmpcode</th>
 <th>icmpid</th>
 <th>icmpseq</th>
 </tr>
</LPHEADER>
<LPBODY>

 58

 <tr>
 <td> %date%</td>
 <td> %time%</td>
 <td> %proto%</td>
 <td> %src%</td>
 <td> %srcport%</td>
 <td> %sig_id%</td>
 <td> %dstport%</td>
 <td> %ethsrc%</td>
 <td> %ethdst%</td>
 <td> %ethlen%</td>
 <td> %tcpflags%</td>
 <td> %tcpseq%</td>
 <td> %tcpack%</td>
 <td> %tcplen%</td>
 <td> %tcpwindow%</td>
 <td> %ttl%</td>
 <td> %tos%</td>
 <td> %id%</td>
 <td> %dgmlen%</td>
 <td> %iplen%</td>
 <td> %icmptype%</td>
 <td> %icmpcode%</td>
 <td> %icmpid%</td>
 <td> %icmpseq%</td>
 </tr>
</LPBODY>
<LPFOOTER>
 </table>
 </p>
 </body>
 </html>
</LPFOOTER>

Graph_analysis.bat: (Adapted from Giuseppini, 2005 [5])

Logparser file:GraphTopAlerts.sql -i:csv -iHeaderFile:AlertHeader.csv -
iTsFormat:MM/dd/yy-hh:mm:ss -headerRow:off -o:chart -chartType:Pie3D -
groupSize:1600x800 -values:ON -chartTitle:”Top Alerts” -categories:OFF

 59

Logparser file:GraphTopSrcIPs.sql -i:csv -iHeaderFile:AlertHeader.csv -
iTsFormat:MM/dd/yy-hh:mm:ss -headerRow:off -o:chart -chartType:Pie -
groupSize:1600x800 -values:OFF -chartTitle:”Top Source IP” -categories:OFF
Logparser file:GraphAlertsPerHour.sql -i:csv -iHeaderFile:AlertHeader.csv -
iTsFormat:MM/dd/yy-hh:mm:ss -headerRow:off -o:chart -chartType:smoothline -
groupSize:1400x700 -values:OFF -chartTitle:”Alerts per Hour” -categories:OFF
Logparser file:GraphTopDstPorts.sql -i:csv -iHeaderFile:AlertHeader.csv -
iTsFormat:mm/dd/yy-hh:mm:ss -headerRow:off -o:chart -chartType:BarStacked -
groupSize:1200x600 -values:OFF -chartTitle:”Top Destination Ports”
Logparser file:GraphTopSrcPorts.sql -i:csv -iHeaderFile:AlertHeader.csv -
iTsFormat:MM/dd/yy-hh:mm:ss -headerRow:off -o:chart -chartType:BarStacked -
groupSize:1200x600 -values:OFF -chartTitle:”Top Source Ports”
Logparser file:GraphTopDstIPs.sql -i:csv -iHeaderFile:AlertHeader.csv -
iTsFormat:MM/dd/yy-hh:mm:ss -headerRow:off -o:chart -chartType:Pie -
groupSize:1600x800 -values:OFF -chartTitle:”Top Destination IP” -categories:OFF
Logparser file:GraphTopProtocols.sql -i:csv -iHeaderFile:AlertHeader.csv -
iTsFormat:MM/dd/yy-hh:mm:ss -headerRow:off -o:chart -chartType:Pie -
groupSize:1000x500 -values:ON -chartTitle:”Top Protocols” -categories:OFF

GraphTopAlerts.sql
SELECT
 msg, ---sig_id,
 Count(msg) as Alerts
INTO report\AlertsTopAlerts.gif
FROM alert.csv
GROUP BY msg ---sig_id
ORDER BY Alerts DESC

GraphTopSrcIPs.sql
SELECT
 src,
 Count(msg) as Alerts
INTO report\AlertsTopSrcIPs.gif
FROM alert.csv
GROUP BY src
ORDER BY Alerts DESC

GraphAlertsPerHour.sql
SELECT
 Count(*) as Alerts
USING QUANTIZE(timestamp,300) as Hour
INTO report\AlertsByHour.gif
FROM alert.csv

 60

GROUP BY Hour

GraphTopDstPorts.sql

GraphTopSrcPorts.sql
SELECT TOP 10
 STRCAT(STRCAT(TO_STRING(srcport),' - '), proto) AS Source,
 Count(*) as Alerts
 USING src as SourcePort
INTO report\AlertsTopSrcPorts.gif
FROM alert.csv
GROUP BY Source
ORDER BY Alerts DESC

GraphTopDstIPs.sql
SELECT
 dst,
 Count(msg) as Alerts
INTO report\AlertsTopDstIPs.gif
FROM alert.csv
GROUP BY dst
ORDER BY Alerts DESC

GraphTopProtocols.sql
SELECT
 proto, ---sig_id,
 Count(proto) as Alerts
INTO report\AlertsTopProtocols.gif
FROM alert.csv
GROUP BY proto ---sig_id
ORDER BY Alerts DESC

Honeyd_log_analysis.bat:

LogParser -i:TSV -o:CSV -iHeaderFile:honeydlog_header.tsv -headerRow:off -

iSeparator:space “SELECT* INTO honeyd1.csv FROM honeyd.log”

honeydlog_header.tsv:

timestamp proto T srcIP srcPort destIP destPort Info Comment

 61

APPENDIX C. NMAP OS DETECTION AGAINST HONEYD

To specify the parameters used to emulate operating systems at TCP/IP

stack level, Honeyd uses the same database “nmap.prints” file that is included in

the Nmap software to properly detect specific operating systems. In this way,

Honeyd tries to give the responses Nmap is expecting to receive from the probes

and packets it sends.

Honeyd’s configuration specifies how to respond to as many as nine

TCP/IP packets and probes sent by the scanner:

• TSeq (Test sequence) specifies how to derive the TCP packet

sequence numbers.

• T1 (Test 1), specifies how to respond to a SYN packet sent to an

open TCP port.

• T2, specifies how to respond to a NULL packet sent to an open

TCP port.

• T3, specifies how to respond to a SYN, FIN, PSH, and URG packet

sent to an open TCP port.

• T4, specifies how to respond to an ACK packet sent to an open

TCP port.

• T5, specifies how to respond to a SYN packet sent to a closed TCP

port.

• T6, specifies how to respond to an ACK packet sent to a closed

TCP port.

• T7, specifies how to respond to a FIN, PSH, and URG packet sent

to a closed TCP port.

• PU, specifies how to respond to a probe sent to a closed UDP port.

For example, the following results are expected for these tests for a

Windows XP OS updated with Service Pack 1.

Fingerprint Microsoft Windows XP Professional SP1

 62

Class Microsoft | Windows | NT/2K/XP | general purpose

TSeq(Class=RI%gcd=<6%SI=<9A6AA&>18A0%IPID=I%TS=U)

T1(DF=Y%W=8820%ACK=S++|O%Flags=AS|A%Ops=M|)

T2(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%Ops=)

T3(Resp=Y%DF=Y%W=8820%ACK=S++|O%Flags=AS||A%Ops=M||)

T4(DF=N%W=0%ACK=O%Flags=R%Ops=)

T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)

T6(DF=N%W=0%ACK=O%Flags=R%Ops=)

T7(DF=N%W=0%ACK=S++%Flags=AR%Ops=)

PU(DF=N%TOS=0%IPLEN=38%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%

DAT=E)

This first-generation operating-system detection method used by earlier

versions of Nmap worked well with Honeyd. But on December 2007, a second-

generation detection method was released for Nmap in version 4.50, which is

more complete, effective, and accurate than the previous one. This method

includes other packets, probes, and tests that make Honeyd’s emulation

methods significantly less effective. The new file that contains the database is

called “nmap-os-db” (Nmap operating system database) and includes several

new tests and significant changes to the previous tests and responses.

The new method sends up to 16 TCP, UDP, and ICMP probes to perform

13 different tests, nine derived from the first-generation fingerprinting and four

new. These tests are:

• SEQ, TCP sequence generation (similar to the older TSeq)

• OPS, TCP options

• WIN, TCP initial window size

• ECN, TCP explicit congestion notification

• T1-T7 (similar to the older T1-T7)

• U1, UDP packet send to a closed port (similar to the older PU)

• IE, ICMP echo request

Here is the same Windows XP SP1 in the database of the second-

generation method used by Nmap.

 63

Windows XP Professional with SP1

Fingerprint Microsoft Windows XP Professional SP1

Class Microsoft | Windows | XP | general purpose

SEQ(SP=82-8C%GCD=1-6%ISR=98-A2%TI=I%II=I%SS=S%TS=0)

OPS(O1=M582NW0NNT00NNS%O2=M582NW0NNT00NNS%O3=M582NW0NNT00%O4=M

582NW0NNT00NNS%O5=M582NW0NNT00NNS%O6=M582NNT00NNS)

WIN(W1=FD5C%W2=FD5C%W3=FD5C%W4=FD5C%W5=FD5C%W6=FD5C)

ECN(R=Y%DF=Y%T=7B-85%TG=80%W=FD5C%O=M582NW0NNS%CC=N%Q=)

T1(R=Y%DF=Y%T=7B-85%TG=80%S=O%A=S+%F=AS%RD=0%Q=)

T2(R=Y%DF=N%T=7B-85%TG=80%W=0%S=Z%A=S%F=AR%O=%RD=0%Q=)

T3(R=Y%DF=Y%T=7B-

85%TG=80%W=FD5C%S=O%A=S+%F=AS%O=M582NW0NNT00NNS%RD=0%Q=)

T4(R=Y%DF=N%T=7B-85%TG=80%W=0%S=A%A=O%F=R%O=%RD=0%Q=)

T5(R=Y%DF=N%T=7B-85%TG=80%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)

T6(R=Y%DF=N%T=7B-85%TG=80%W=0%S=A%A=O%F=R%O=%RD=0%Q=)

T7(R=Y%DF=N%T=7B-85%TG=80%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)

U1(DF=N%T=7B-

85%TG=80%IPL=38%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUD=G)

IE(DFI=S%T=7B-85%TG=80%CD=Z)

Consequently, using Nmap 4.5 to detect the operating system for a host

emulated by Honeyd, results in either failure or multiple operating-system

matches. For instance, if we emulate Microsoft XP SP1 with Honeyd, Nmap 5 will

display the message “No exact OS matches for the host.”

Is it possible to make the necessary changes to “nmap.prints” file to work

well with the second generation Nmap? To answer this we need to analyze the

meaning of the results and then try to adapt “nmap.prints” to what new versions

of Nmap expect to receive.

TSeq test, the TCP sequence test (now called SEQ), needs the

modifications shown in Table 14. We also must change the format for the

timestamp from an integer 7, to its equivalent in first-generation, 100HZ.

Moreover, we need to respond to the following new tests: TCP ISN sequence

predictability index (SP), TCP ISN counter rate (ISR), and shared IP ID sequence

Boolean (SS).

 64

First

generation

Second

generation

Description

Class - OS classification or device type

gcd GCD TCP ISN greatest common divisor

SI -

IPID TI, CI, II IP ID sequence generation algorithm

TS TS TCP timestamp option algorithm

Table 14. Modifications in Tseq test

The seven tests from T1 to T7 have the modifications shown in Table 15.

The following subtests are new in second generation and do not appear in the

first-generation: IP initial time-to-live (T), IP initial time-to-live guess (TG), TCP

sequence number (S), TCP reset data checksum (RD), and TCP miscellaneous

quirks (Q).

First

generation

Second

generation

Description

Resp R Responsiveness

DF DF Do not fragment bit

W W Windows size.

ACK A TCP acknowledged number

Flags F TCP flags

Ops O TCP options

Table 15. Modifications in tests T1–T7

The PU test, a probe sent to a closed UDP port now called U1 needs the

modifications shown in Table 16. We need to change the G (good) in second

generation to an E (expected) in the results for RID, RIPCK, UCK and DAT tests.

Also, the following subtests are new in the second generation and do not appear

 65

in the first generation: IP initial time-to-live (T), IP initial time-to-live guess (TG)

and unused port unreachable field non-zero (UN). Three complete tests are

entirely new in the second-generation: TCP options (OPS), TCP initial window

size (WIN) and ICMP echo (IE).

First

generation

Second

generation

Description

Resp R Responsiveness

DF DF Do not fragment bit

TOS - Type of Service, removed in new version

IPLEN IPL IP total length

RIPTL RIPL Returned probe IP total length value

RID RID Returned probe IP ID value

RIPCK RICPK Integrity of returned probe IP checksum value

UCK RUCK Integrity of returned probe UDP checksum

ULEN - UDP length

DAT RUD Returned data

Table 16. Modifications in PU test

Considering the equivalent values in both methods, we could make some

changes to try to adapt a first generation fingerprint to a new version of Nmap.

Unfortunately, experiments with operating-system detection were disappointing,

and Nmap’s guesses for the operating system were diverse.

To get more success in the operating-system detection, we can change

the “default TCP action” to “open,” instead of the commonly used “reset” or

“block.” With this modification the emulated operating system is detected by

Nmap with confidence values between 80% and 90%, but the high number of

open ports in the host is not a credible configuration and could be suspicious if

an attacker inspected it. With this modification, we could also emulate new

operating systems not available in the original “nmap.prints” file, like Windows XP

 66

SP3, Windows Server 2008, or Windows 7—all of which could be detected by

new versions of Nmap with similar confidence values.

The following are the fingerprints created for these operating systems:

Fingerprint Windows 7

TSeq(Class=TR%gcd=<6%IPID=I%TS=100HZ)

T1(Resp=Y%DF=Y%W=2000%ACK=S++%Flags=AS%Ops=MNWNNT)

T2(Resp=Y%DF=Y%W=0%ACK=S%Flags=AR%Ops=)

T3(Resp=Y%DF=Y%W=0%ACK=O%Flags=AR%Ops=)

T4(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

PU(DF=N%TOS=0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%

DAT=E)

Fingerprint Microsoft Windows Server 2008

Class Microsoft | Windows | 2008 | general purpose

TSeq(Class=TR%gcd=1-6)

T1(Resp=Y%DF=Y%ACK=S++%Flags=AS)

T2(Resp=Y%DF=Y%W=0%ACK=S%Flags=AR%Ops=)

T3(Resp=Y%DF=Y%W=0%ACK=O%Flags=AR%Ops=)

T4(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)

T7(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)

PU(DF=N%IPLEN=164%RIPTL=E%RID=E%RIPCK=E%UCK=E)

Fingerprint Windows XP SP3

TSeq(Class=TR%IPID=I%TS=0)

T1(DF=Y%W=FAF0%ACK=S++%Flags=AS%Ops=MNWNNT)

T2(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%Ops=)

T3(Resp=Y%DF=Y%W=FAF0%ACK=S++%Flags=AS%Ops=MNWNNT)

T4(DF=N%W=0%ACK=O%Flags=R%Ops=)

T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)

T6(DF=N%W=0%ACK=O%Flags=R%Ops=)

 67

T7(DF=N%W=0%ACK=S++%Flags=AR%Ops=)

PU(DF=N%TOS=0%IPLEN=B0%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%

DAT=E)

Until there is a patch or a new Honeyd version that works better with

second-generation Nmap, in order to simulate different operating systems we

have to rely on a credible port configuration, opening common, or well-known

ports for the operating system we want to emulate.

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

LIST OF REFERENCES

[1] N. Provos, “Developments of the virtual honeyd honeypot.” Honeyd.org.
Available: http://www.honeyd.org/.

[2] The Honeynet Project, Know Your Enemy: Learning about Security

Threats (2nd ed.). Boston, MA: Addison-Wesley, 2004.

[3] N. Provos and T. Holz, Virtual Honeypots: From Botnet Tracking to

Intrusion Detection. Boston, MA: Addison-Wesley Professional, 2008.

[4] N. Krawetz, “Anti-honeypot technology,” IEEE Security & Privacy, pp. 76–

79, January/February 2004.

[5] G. Giuseppini, Microsoft Log Parser Toolkit, Waltham, MA: Syngress

Publishing, 2005.

[6] B. McCarty, “The honeynet arms race,” IEEE Security & Privacy, pp. 79–

82, November/December 2003.

[7] R. Grimes, Honeypots for Windows. Berkeley, CA: A-Press, 2005.

[8] N. Rowe, “Measuring the effectiveness of honeypot counter-

counterdeception,” Proc. 39th Hawaii International Conference on
Systems Sciences, Poipu, HI, January 2006.

[9] B. Duong, “Comparisons of attacks on honeypots with those on real

networks,” M.S. thesis, Naval Postgraduate School, 2006.

[10] S. Lim, “Assessing the effect of honeypots on cyber-attackers,” M.S.

thesis, Naval Postgraduate School, 2006.

[11] L. Spitzner, Honeypots: Tracking Hackers. Boston, MA: Addison-Wesley,

2003.

[12] Nmap.org, “TCP/IP Fingerprinting methods supported by Nmap,” Chapter

8. Remote OS Detection. Available: http://nmap.org/book/osdetect-
methods.html.

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Neil C. Rowe
Naval Postgraduate School
Monterey, California

4. Mr. Daniel F. Warren
Naval Postgraduate School
Monterey, California

5. LCDR Erwin E. Frederick
Chilean Navy
Valparaiso, Chile

	I. INTRODUCTION
	II. PREVIOUS WORK AND BACKGROUND
	A. HONEYPOTS
	1. Variations of Honeypots According to Their Interaction Level
	2. Types of Honeypots According to Their Purpose
	3. Types of Honeypots According to Their Implementation
	4. Types of Honeypots According to Their Side
	5. Honeynets
	6. Monitoring Tools in a Honeypot

	B. ANTI-HONEYPOT TECHNOLOGY

	III. DESCRIPTION OF THE APPLICATIONS
	A. HONEYD
	1. Detection of Honeyd

	B. VMWARE
	1. Countermeasures against VMware Fingerprinting

	C. SNORT
	D. WIRESHARK
	E. MICROSOFT LOG PARSER
	F. SECURITY ONION
	G. FEDORA 14

	IV. METHODOLOGY
	A. OBJECTIVES
	B. THE EXPERIMENT
	C. SUMMARY OF CONFIGURATIONS USED
	D. METHODOLOGY TO ANALYZE THE RESULTS

	V. ANALYSIS OF THE RESULTS
	A. THE EXPERIMENT VIEWED FROM THE OUTSIDE
	B. HONEYD AS A HONEYPOT
	C. SNORT ALERTS
	D. PORT USAGE
	E. OPERATING SYSTEMS MORE ATTACKED
	F. SERVICE SCRIPTS
	G. POSSIBLE COMPROMISE IN THE SYSTEMS RUNNING THE HONEYPOTS
	H. HONEYD AS A DECOY

	VI. CONCLUSIONS AND FUTURE WORK
	A. CONCLUSIONS
	B. FUTURE WORK

	APPENDIX A. DETAILS OF THE CONFIGURATIONS USED BY WEEK
	APPENDIX B. COMMANDS, CONFIGURATION, AND CODE USED
	A. COMMANDS USED
	B. HONEYD CONFIGURATION FILE
	C. SCRIPTS AND CODE USED

	APPENDIX C. NMAP OS DETECTION AGAINST HONEYD
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

